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Abstract. We study the spin dynamics in a p-wave superconductor at the nesting vector assoc-
iated with the α- and β-bands in Sr2RuO4. We find a collective mode at the nesting vector in
the superconducting phase identified as the odd-parity pairing state which breaks time-reversal
symmetry. This mode in the spin channel exists only in a p-wave superconductor, not in s- or
d-wave superconductors. We propose that probing this mode would clarify the pairing symmetry
in Sr2RuO4.

The nature of superconductivity in Sr2RuO4 [1] has been the subject of intense theoretical
and experimental activity. Although Sr2RuO4 has the same layered perovskite structure as
La2CuO4, the prototype of the cuprates, the behaviour is remarkably different. At present, not
much is known about any possible relation to the cuprates.

While it is clear that electron correlation effects are important in Sr2RuO4, the normal state
is characterized as essentially a Fermi liquid below 50 K. The resistivities in all directions show
T 2-behaviour for T � 50 K. The effective mass is about 3–4 melectron and the susceptibility
is also about 3–4 χ0 where χ0 is the Pauli spin susceptibility. There is considerable evidence
that, in contrast to the conventional normal state (below 50 K), the superconducting state
(below about 1 K) is unconventional. The nuclear quadrupole resonance (NQR) does not
show a Hebel–Slichter peak [2]. The transition temperature is very sensitive to non-magnetic
impurities [3]. 17O NMR Knight shift experiments show that the spin susceptibility undergoes
no change across Tc but stays the same as in the normal state for magnetic field parallel to the
RuO2 plane [4].

Shortly after the discovery of superconductivity in Sr2RuO4, it was proposed that odd-
parity (spin-triplet) Cooper pairs are formed in the superconducting state in analogy with the
case for 3He [5]. Further evidence favouring spin-triplet pairing is provided by the observation
of the ferromagnetic metallic state in SrRuO3 which is the three-dimensional analogue of
layered Sr2RuO4 [6]. Since a weak-coupling analysis of the spin-triplet state implies a nodeless
gap [5], it is puzzling that the specific heat and NQR measurements show a large residual
density of states (DOS)—50–60% of the DOS of the normal state—in the superconducting
phase [2,7]. As a consequence, a non-unitary superconducting state like the 3He A1 phase has
been proposed [8]. However, a recent specific heat measurement [9] shows that the residual
DOS is about 25% of the normal DOS, which indicates that the non-unitary state may not be
stabilized.

An alternative explanation, the so-called orbital-dependent superconductivity, has been
proposed [10]. Since four 4d electrons in Ru4+ partially fill the t2g band, the relevant orbitals are
dxy , dxz, and dyz which determine the electronic properties. Using the quasi-two-dimensional
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nature of the electronic dispersion, the authors of [10] show that there are two superconducting
order parameters for two different classes of the orbitals. The gap of one class of bands is
substantially smaller than that of the other class of bands. The presence of gapless excitations
for temperatures greater than that of the smaller gap would account for a residual DOS. The
recent analysis of the London penetration depth and coherence length led to evidence being
found for orbital-dependent superconductivity, with dxy identified as the orbital relevant for
superconductivity [11]. The possibility of a second superconducting phase transition when the
pairing symmetries are different for different classes of the bands was also discussed .

Sigrist et al proposed [12] the following order parameter which is claimed to be compatible
with all currently available experimental data:

d = d̂(k1 ± ik2) (1)

where d̂ is parallel to the ĉ-axis and the gap is described as a tensor represented in terms of d

in the following way.

∆̂(k) = σ · d iσ2 (2)

where σ is the vector of Pauli matrices. Here d̂ is the spin vector whose direction is perp-
endicular to the direction of the spin associated with the condensed pair [13]. Notice that the
direction of the order parameter vector is frozen along the ĉ-direction due to the crystal field
and there is a full gap over the whole Fermi surface.

The details of the Fermi surface have been observed from quantum oscillations [14].
The Fermi surface consists of three nearly cylindrical sheets, which is consistent with the
electronic band calculations [15]. The three Fermi sheets are labelled α, β, and γ . While the
γ -sheet of the Fermi surface can be attributed solely to the dxy Wannier function, the α- and
β-sheets are due to the hybridization of the dxz and dyz Wannier functions. Combining the
orbital-dependent superconductivity and experimental observation [11], we find that the gap
associated with the γ -band is larger than that associated with the α- and β-bands. Therefore
the γ -band, which is essentially a quasi-isotropic two-dimensional one, is responsible for the
existing superconductivity. On the other hand, the α- and β-sheets are quasi-one-dimensional,
and can be visualized as a set of parallel planes separated byQ = 2π/3 running in both the kx-
and ky-directions. Therefore, it is natural to expect sizable nesting effects at the wave vector
Q = (2π/3, 2π/3) originating from the α- and β-bands. In the normal state, one can see
that there should be a collective mode in the spin channel due to nesting, as has been shown
by numerical calculation of the static susceptibility [16]. Neutron scattering experiments also
show a peak at the wave vector (0.6π, 0.6π, 0), close to the nesting vector [16], with energy
transfer 6.2 meV [17]. Mazin and Singh discussed the possibility of a competition between
p-wave and d-wave superconductivity in Sr2RuO4. The experimental result [17] also casts
some doubt on a predominant role for ferromagnetic spin fluctuations in the mechanism of
spin-triplet superconductivity. Although it is generally accepted that the pairing symmetry
in Sr2RuO4 has odd parity, further theoretical and experimental studies are still necessary to
determine the pairing symmetry of the possible order parameters [5] which have odd parity.

In this paper, we propose a way to probe the pairing symmetry in Sr2RuO4. We calculate
the spin–spin correlation function at the nesting vector, Q = (2π/3, 2π/3), using the Green
function method. It is important to include the coupling between the spin density and the
vectorial order parameter fluctuation which is a property unique to p-wave superconductors.
We find a collective mode in the spin channel in the superconducting state only for a p-
wave superconductor with pairing symmetry which breaks time-reversal symmetry. Since the
position of the resonant peak is just below 2�, this will also determine the size of the smaller
gap related to the α- and β-bands which have nesting. On the other hand, no observation of the
mode will indicate that the pairing symmetry associated with the α- and β-bands is different
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from that associated with the γ -band, assuming that the pairing symmetry in the γ -band, which
does not have any nesting effect on the Fermi surface, is the one proposed as equation (1).
Therefore there must be a second superconducting phase transition at a rather low temperature.

Using the Nambu representation, the Green function can be written as [18, 19]

G−1(ωn,k) = iωn − ξkρ3 −�ρ1σ · d̂ iσ2 (3)

where ρ and σ are Pauli matrices which operate in the particle–hole and spin spaces, resp-
ectively. Here ξk = k2/(2m)− µ, where µ is the chemical potential. In the superconducting
state, the bare transverse susceptibility which represents the spin-flip procedure can be written
by using Green functions [19, 20]:

χ00(ων, q) = T
∑
n

∑
k

Tr[G(ωn,k)α+G(ωn + ων,k + q)α−] (4)

where ωn is the Matsubara frequency and the spin vertex α is given by [21]

α = 1 + ρ3

2
σ +

1 − ρ3

2
σ2σσ2 (5)

and α± = α1 ± iα2.
Since the gap order parameter fluctuation couples to the spin density, the susceptibility

renormalized by order parameter fluctuations consists of two parts:

χ0(ω, q) = χ00(ω, q)− V (ω, q)g′V̄ (ω, q)
1 − g′�(ω, q)

(6)

where g′ is the coupling constant of the spin density and the order parameter fluctuation. Here
V (ω, q) and �(ω, q) can be computed as follows:

V (ων, q) = T
∑
n

∑
k

Tr[G(ωn,k)α+G(ωn + ων,k + q)(α−ρ1σ1)]

�(ων, q) = T
∑
n

∑
k

Tr[G(ωn,k)(α+ρ1σ1)G(ωn + ων,k + q)(α−ρ1σ1)].
(7)

Using ξk = −ξk+Q for the nesting vector Q, we found the following results at T = 0:

Re χ00(ω,Q) =




−g−1 −N0
|ω| arcsin(|ω|/2�)

2
√

|ω2 − 4�2|
|ω| < 2�

−g−1 −N0|ω| ln

(
4�2

ω2 − 4�2

)/
(2

√
ω2 − 4�2) |ω| > 2�

Im χ00(ω,Q) =



0 |ω| < 2�

−N0
πω

2
√
ω2 − 4�2

|ω| > 2�

(8)

ReV (ω,Q) =




−N0
� sgn(ω) arcsin(|ω|/2�)√

|ω2 − 4�2|
|ω| < 2�

−N0� sgn(ω) ln

(
4�2

ω2 − 4�2

)/√
ω2 − 4�2 |ω| > 2�

Im V (ω,Q) =



0 |ω| < 2�

−N0
π�√

ω2 − 4�2
|ω| > 2�

(9)
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Re�(ω,Q) =




N0
2�2 arcsin(|ω|/2�)

|ω|
√

|ω2 − 4�2|
|ω| < 2�

N02�2 ln

(
4�2

ω2 − 4�2

)/
(|ω|

√
ω2 − 4�2) |ω| > 2�

Im�(ω,Q) =




0 |ω| < 2�

N0
2π�2

ω
√
ω2 − 4�2

|ω| > 2�

(10)

whereN0 is the DOS at the Fermi level. Using the above result, the renormalized susceptibility
is obtained as follows for |ω| < 2�:

Re χ0(ω,Q) = −g−1 − N0

2

|ω| arcsin(|ω|/2�)√
4�2 − ω2

+
N2

0�
2|ω|(arcsin(|ω|/2�))2

g′−1|ω|(4�2 − ω2)− 2N0�2 arcsin(|ω|/2�)√4�2 − ω2

Im χ0(ω,Q) = 0 (11)

where g is the strength of the interaction which is responsible for the superconductivity.
Including the effect of the exchange interaction within the random phase approximation

(RPA), the full dynamical spin susceptibility is expressed as

χ(ω, q) = χ0(ω, q)

1 − Iqχ0(ω, q)
(12)

where the exchange interaction IQ ≡ −I for Q. Since Im χ0 = 0 and Re χ0 diverges as ω
approaches 2�, there exists a collective mode which is a bound state of excited pairs. The
mode is positioned at

ω = 2�− π2

4
I 2�N2

0 . (13)

Here we have used the fact† that g 
 I, g′. We also assumed that arcsin(|ω|/2�) ≈ π/2,
consistent with the result. Notice that the position of the mode is very close to 2�. The
intensity of the peak is

π2

2
I�N2

0 . (14)

Now, let us investigate the case of the spin-singlet superconductors, such as s- or d-wave
superconductors. In the case of the spin-singlet superconductors, the bare spin–spin correlation
function can be obtained through the following expression:

χ0(ω,Q) =
∑

k

(
1 − ξkξk+Q +�k�k+Q

EkEk+Q

)(
1

ω − Ek − Ek+Q

− 1

ω + Ek + Ek+Q

)
. (15)

For an s-wave superconductor, i.e.,�k = �k+Q = �, one can obtain the following results
for |ω| < 2�:

Re χ0(ω,Q) = −N0 ln

(√
|ω2 − 4�2|
�

+

√
|ω2 − 3�2|
�

)
+ ln(C)

Im χ0(ω,Q) = 0
(16)

† Because I represents the exchange interaction between the spin waves formed in the superconducting state, I is
smaller than g for the stability of the ground state. 1/g′−1/g = %d/(4�2)where the%d is the pinning frequency [19].
Here we neglect it since it is much smaller than the gap.
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where C is a constant. This implies that one needs an enormously large interaction I to get a
collective mode, i.e., I 
 1/N0, which is practically impossible.

Let us study the possibility of having a resonance peak in a d-wave superconductor at the
nesting vector Q = (2π/3, 2π/3). Assuming that the superconducting phase is described by
the conventional BCS superconductor with the d-wave pairing symmetry:

�(k) = (�/2)[cos(kx)− cos(ky)]

we use the same expression as equation (15) for the bare spin–spin correlation function. Due
to the coherence factor, there is a collective mode at Q = (π, π) even without nesting in the
electronic dispersion [22]. However, in the case of Q = (2π/3, 2π/3), we do not have a
simple relation like that for Q = (π, π). In fact, �k is equal to −�k+Q for the line from
k = (−2π/3, 0) to (0,−2π/3), which makes the coherence factor O(1), but �k and �k+Q

have linear dispersion in (kx, ky) so it does not produce any singularity in the spin susceptibility.
If the momenta lie near nodes, then we have the same dispersion relation for Q = (π, π), and
it was found [23] that there is no singularity in the spin channel if k and k + Q are near nodes.
Therefore we do not expect any collective mode in either s- or d-wave superconductors at the
wave vector Q = (2π/3, 2π/3).

The possible Cooper pairing states were classified according to the irreducible rep-
resentations of the tetragonal point group D4h which include one two-dimensional and four
one-dimensional representations for both even and odd parity [5, 24]. Assuming that the
order parameter associated with the α- or β-bands has different pairing symmetry to that
of equation (1), we also study the existence of a resonance peak with the following order
parameters classified as odd-parity pairing:

d =




x̂k1 + ŷk2

x̂k1 − ŷk2

x̂k2 + ŷk1

x̂k2 − ŷk1.

(17)

We found that the spin–spin correlation function behaves as in equation (16). However,
since the direction of the d-vector is now in the x–y plane, the spin–spin correlation function
along the z-direction has the same singularity as equation (8).

Therefore, we conclude that the collective mode at the nesting vector exists only with
the proposed order parameter, equation (1), unless there is unusually strong coupling between
the spin density and the order parameter fluctuation. It is important to emphasize that the
collective mode at the nesting vector cannot be obtained from the general expression for the
spin wave given in reference [19], because this mode is a bound state which occurs only at the
nesting vector.

In conclusion, we studied the spin dynamics in a p-wave superconductor at the nesting
vector associated with the α- and β-bands in Sr2RuO4. We found that there is a collective
mode at a frequency just below 2� where� is the smaller gap according to orbital-dependent
superconductivity. We show that this mode exists only in a p-wave superconductor, not in
s- or d-wave superconductors. We also demonstrated that the other odd pairing states do not
produce the collective mode in the transverse susceptibility unless there is unusually strong
coupling between the spin density and the order parameter fluctuation. Therefore we suggest
that probing this mode will determine the pairing symmetry associated with theα- andβ-bands,
and possibly the γ -band provided that it has nesting. This will help to clarify the controversy
regarding the pairing symmetry in Sr2RuO4.
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